Linking Mobile Learning and Offline Interaction - A Case Study

Inga Saatz
Department of Computer Science
Univ. of Applied Sciences and Arts,
Emil-Figge Str. 42
Dortmund, Germany
inga.saatz@fh-dortmund.de

Abstract
The use of computer mediated learning has changed the way of learning. To support the collaboration within small ad hoc learning communities, a mobile learning application was enhanced to provide possibilities to share user-generated content. To link the mobile application with the social offline interaction between the learners, the pedagogical scenario of a mobile application was enhanced to offer more possibilities for verbal communication between the learners. Results of a pilot study indicate interferences between computer mediated and face-to-face communication, which leads to a preference of one of the communication channels by the users.

Author Keywords
Mobile learning; collaborative learning; e-flashcards; offline interaction; learning communities.

ACM Classification Keywords
K.3.1 Collaborative learning; H.5.3. Synchronous interaction; H.5.2. [User Interfaces]: User-centered design;

Introduction
In recent years, the use of computer mediated learning has changed the way of learning. The use of mobile devices offers new possibilities for learning anytime and
anywhere in spare times, for example while waiting at a
bus stop. Studies indicate a positive effect on the
learning outcome where mobile devices are used within
the learning process in large university courses (see for
example [5]). However, designs of mobile learning
applications often focus on single users and offline
interaction between the learners is not taken into
account. For example, opportunities for offline
interaction occur if two or more learners take the same
bus on their way to the university. But instead of
learning together, the learners may sit together and
interact with their own mobile device separately.

This leads to the main research question, how to
enhance a mobile learning application to support
collaboration within ad hoc learning communities.
Related studies, for example [1, 3, 6, 7], show the
implementation of ad hoc mobile collaborative learning
scenarios within formal educational settings, but mainly
did not consider its effect onto the offline interaction of
the learners. To gain additional benefits, a mobile
learning application should support:
- offline interaction between learners,
- mobile collaborative learning,
- ad hoc exchange of learning content.

To meet these requirements, a mobile e-flashcard
application was enhanced to facilitate ad hoc
collaboration and foster offline communication within
small learning communities.

Linking Mobile and Offline Learning
The flashcard learning approach for ad hoc collaborative
learning picks up the pedagogical scenario of
questioning each other using paper-based flashcards.

One learner takes the role of a questioner and requests
the answer to the question on his flashcard from the
other learners. The answers of the other learners are
compared with the flashcard content and discussed
between the learners. Afterwards the flashcard is
sorted into the flashcard decks and the questioner may
change.

Recent studies carried out within university courses
(see [2, 4]) indicate an acceptance of the computer
mediated use of electronic e-flashcards by the learners,
but the proposed mobile application does not support
collaborative learning. To take offline interaction within
small learning communities into account, the mobile e-
flashcard application, described in [4], was enhanced to
support ad hoc collaborative learning. Furthermore,
the collaborative paper-based flashcard scenario was
converted into a mobile learning scenario. This mobile
scenario contains the following steps:

1. Establishing a Bluetooth-Connection between
 the mobile devices of the learners.
2. Start of the collaborative learning session.
3. Learner 1 chooses the course lecction and the
 question types to be used and starts the
 learning session.
4. Learner 1 takes the role of the questioner.
 Therefore, Learner 1 sees the answer side of
 the e-flashcard on the mobile device. The other
 learners only see the corresponding question
 side of the e-flashcard on their mobile devices.
 The order of the answers is mixed to enhance
 verbal discussions (see figure 1).
5. The learners communicate verbally according
to the question of the e-flashcard. The
 questioner can send the solution or parts of it,
for example a correct match in a fill-in-the-gap question, to the mobile devices of the other learners.

6. The next first learner, who touches the display after the answer is displayed on all mobile devices, takes the questioners’ role from learner 1 for the following e-flashcard.

7. Next to step 4.

Figure 1. Screenshot of the mobile Application

First Experiences
To prove the concept of linking mobile learning with e-flashcards with offline interaction of learners, a study was conducted at a vocational school for commerce in February 2013. The test group consisted of 16 students (14 male, 2 female), who were preparing for the A-level examination in the subject business economics.

The students had worked with an e-learning management system beforehand, but they had no pre-experiences with mobile learning applications. The peer groups worked on their own, questioning each other by means of the mobile application. But the students sat side by side and worked together with their mobile devices just as if they were working on their own. Although verbal communication was encouraged, offline interaction between the learners remains constant at a low level.

Discussion
Future work will investigate the technical potentials of mobile devices to support ad hoc learning communities. Beyond that, the impact of the use of mobile learning application on the offline communication between the learners has to be measured empirically. As the first experiences indicate, it is not sufficient only to convert an offline pedagogical scenario into a mobile collaborative application to foster offline interaction between the learners within learning communities. To motivate offline interaction between the learners, the mobile application can be enhanced to offer further stimuli for offline communication. This might be achieved by enhancement of additional playful or social elements to the mobile application. For example, a playful element is the task of guessing definitions and terms based on explanation of one of the learners. An example for a social element is a quest task based on the user generated content, which is fulfilled by the whole group. More research should clarify, which additional elements are appropriate to foster offline interaction between the learners. Furthermore, combinations of those elements, for example a mobile quiz combined with an offline social reputation-based system, have to be evaluated regarding their effect on
the learners’ offline interaction. Additionally, further studies should investigate the reasons for the observed interference between the face-to-face and computer mediated communication channels. One reason might be the shift of the sensory channel used for communication. Whereas the offline interactions take place mainly verbal and non-verbal, users got used to communicate with each other in daily life with their visual and haptic senses by utilizing mobile devices. Therefore, users adapt their communication behavior to the technical capabilities of mobile devices, which limits offline communication.

CONCLUSION
This study presented a mobile learning application, which pedagogical scenario offers more possibilities for verbal communication. First experiences indicate difficulties of the user to communicate face-to-face while interacting with the mobile application simultaneously. Further studies have to be carried out to overcome this negative side-effect of decreasing offline interaction and to strengthen the ubiquitous potential of utilizing mobile devices in ad hoc learning communities. These studies have to clarify, how the use of both communication channels between the learners can be combined and balanced out.

Acknowledgements
Thanks to the students Stefan Hoppe and Robert Zimmer for the implementation of the mobile application.

References