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Abstract
Human beings often give non-verbal instructions through
motions of the hand and arm, such as pointing or waving.
These motions convey not just actions, but the direction
or target of those actions. In this paper, we integrate di-
rection into gesture definitions by detecting frequency shifts
created by relative motion between a receiver and transmit-
ter and combining this with inertial motion data captured
by a smartphone. With the combined data we are able
separate similar gestures with 71.7% accuracy in a typical
home use environment.
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Introduction
Arm-based gestures have gained recent attention as an in-
tuitive method of communication with devices and inter-
faces, as they are already used between people. Gestures
such as pointing and waving are common, well-understood
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and distinctive. Most approaches to recognising arm ges-
tures use images or video of the user, and rely on recognis-
ing specific poses or a sequence of poses [?] [?]. If a gesture
is used to identify a target, both target and user must be in
view of the camera, and the system must be able to deter-
mine what objects in the scene are background and which
are potential targets.
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Figure 1: System Overview

There have been a growing number of systems using ul-
trasound to determine relative motion or positioning of de-
vices, rather than vision-based methods. The Spartacus [?]
and DopLink [?] systems both use the Doppler effect on au-
dio frequency due to user motion to select one device from
a group, or to determine the relative position of multiple
devices.

In this paper, we present a method of combining the rela-
tive motion information gained from observing the Doppler
effect with the inertial sensor data of a smartphone in mo-

tion to specify gestures with a directional component. This
method can be extended to define targeted gestures, such
as directing a command to a selection of targets from a
group. An outline of this system is given in Fig. 1.

Frequency Shift Detection
When a sound source and receiver are in motion relative to
each other, there is a frequency shift dependent on their rel-
ative velocities. The sign of this relative velocity indicates
the direction of motion between the receiver and transmit-
ter, i.e. whether they are moving together or apart. The
relationship is approximately:

∆f =
∆v

c
f0 (1)

where ∆f is the frequency shift, ∆v is the relative velocity,
c is the speed of sound, and f0 is the true frequency emitted
by the transmitter. Thus the observed frequency shift is
directly proportional to the speed of the user’s device.

Since the audio tones used are 20 kHz and above, a sam-
pling rate of 44.1 kHz is used to satisfy the Nyquist re-
quirement. In order to extract the timing of the frequency
shift, we use a short-time Fourier transform. The desired
frequency resolution at the original sampling rate would re-
quire an FFT length of about 8192 samples, which is too
computationally intensive, and includes many unwanted fre-
quency bins. To reduce the necessary FFT size, the audio
is downsampled by a factor of 5, giving a new sampling rate
of 8820 Hz, and a Chirp-Z transform is used to focus on a
region of interest. For the gestures currently recognised,
the maximum frequency shift does not exceed 200 Hz. We
have chosen a band of ±400 Hz from the transmitter fre-
quency as a safe margin.
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Time Alignment
In a real-time environment, it would be possible to obtain
the motion sensor readings and audio samples simultane-
ously. However, on a typical smartphone, the motion data
is sampled at intervals and delivered on a callback thread,
independent of the audio capture. Furthermore, the times-
tamps that are provided with motion events on popular
smartphone platforms are guaranteed to be consistent with
other motion timestamps, but not with timestamps from
other sources, e.g. the system clock used for audio cap-
ture timing. Therefore, the first step in processing is to
convert the motion sensor timestamps to the same refer-
ence as the audio capture time. This is done by taking a
system timestamp with the first sensor readings and sub-
tracting the sensor timestamp to provide a rough estimate
of the offset between clocks.

a
b c
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Figure 2: Sweeping motion away from (a), across (b) and
towards (c)

Gesture Segmentation
Once the data is roughly aligned in time, the different
timestamps and sampling intervals mean that the readings
still cannot be directly compared. Instead,the frequency
and motion readings are segmented into regions, separated
by periods of rest. First, positive and negative thresholds
are applied so that only a certain magnitude of frequency
shift, acceleration or angular velocity can trigger a gesture

(dashed lines in Fig. 3). Secondly, a threshold is set on the
number of samples below the trigger magnitude needed be-
fore the system is considered at rest again. This is to allow
crossings to register as part of the same gesture instead of
being split when the thresholds are crossed. The start and
end times of the segments are compared, and if they are
the same to within 1 s, they are taken as components of
the same gesture.

Feature Extraction
Fig.3 shows sensor readings from a series of gestures, either
towards, away from, or across an ultrasound transmitter
(Fig 2).
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Figure 3: Relative motion to transmitter derived from motion
and frequency shift

The first event (Fig. 3a) is ignored because it falls below the
threshold. Frequency shift alone could be used to determine
a movement towards (Fig. 3b) or away from (Fig. 3c)
the transmitter, but motion data is needed to distinguish
a motion across (Fig. 3d+e) the transmitter from a back-
and-forth motion (Fig. 3f).
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Relative motion Orientation
1 Towards flat
2 Across flat
3 Across upright
4 Away upright

Table 1: Example gestures

Predicted

Actual

1 2 3 4 invalid
1 14 0 0 0 1
2 2 5 0 0 8
3 0 0 12 2 1
4 0 0 0 12 3

Table 2: Gesture detection confusion matrix

Predicted

Actual

across towards away invalid
across 17 2 8 3

towards 0 14 0 1
away 0 0 12 3

Table 3: Relative motion confusion matrix

Results
The system was implemented with a LG Nexus 5 as the re-
ceiver, and an iPhone placed on a table as a transmitter.
Table 1 shows a sample of 4 different gestures out of a pos-
sible 9 (3 orientations and 3 types of relative motion) that
were chosen for recognition. Each shares a feature with one
other motion in order to demonstrate the ability to distin-
guish similar gestures. The motion used is shown in Fig
2, with the phone held in portrait mode either perpendic-
ular (’upright’) or parallel (’flat’) to the floor. The ges-
tures were performed in random sequence at 3 m from the
transmitter in a typical room containing furniture and other
surfaces that could cause distortion and echoes. The result-

ing confusion matrix for classification is shown in Table 2.
Combinations outside the chosen 4, such as ’away/flat’, are
marked as invalid for classification.

The system had an overall accuracy of 71.7% on these ges-
tures. Note that gestures with disjoint features (e.g. ’to-
wards/flat’ and ’across/upright’) are not confused.

Conclusion
We have shown how relative motion obtained from Doppler
shift measurements can be combined with inertial motion
to create a gesture scheme that allows for a wider range
of gestures than either system alone. Building on these
combined gesture types, we plan to develop more complex
gestures, such as drawing a line between two devices to ini-
tiate a link or indicate some relationship between them. We
also plan to conduct more detailed user experience evalua-
tions for these gestures.
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