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Abstract
In this research, we aim at estimating the positions and
directions of on-body mobile devices such as smartphones
with accelerometers and gyroscopes. We propose a
method utilizing prior knowledge of positions and
directions of sensors. We model the prior knowledge by
neighborhood method trained from a motion capturing
system, and combine with physical principles by Bayes’
theorem. To assess our approach, we developed a system
for collecting acceleration and position data using an
accelerometer and motion capture, and experimented with
data obtained using it. In contrast to the conventional
method, the experimental result shows that the proposed
method stably follows a trajectory.

Author Keywords
Smartphone, Accelerometers, Gyroscopes, Tracking
On-Body Sensor Positions

ACM Classification Keywords
I.4.8 [Scene Analysis]: tracking.

Introduction
Recently, activity recognition with sensor data has become
realistic by the spread of mobile devices such as
smartphones with accelerometers and gyroscopes. In this
research, we aim at estimating the positions and
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directions of on-body mobile devices such as smartphones
with accelerometers and gyroscopes. In the literature,
many researches for recognizing several types of activities
exist in which the activities are represented in categorical
variable, but few tackle with numeric ones, that is the
positions and directions of sensors on the body.
Since the sensors output differential values, estimating the
positions and directions corresponds to the integrated
values, which is challenging under noises. In this paper,
we propose a method utilizing prior knowledge of positions
and directions of sensors. If the device is on the body, we
can assume the the positions and the directions have
specific distributions. We model them by neighborhood
method trained from a motion capturing system, and
combine with physical principles by Bayes’ theorem.
To assess our approach, we developed a system for
collecting acceleration and position data using an
accelerometer and motion capture, and experimented with
data obtained using it. In contrast to the conventional
method, the experimental result shows that the proposed
method stably follows a trajectory.
In this paper, we firstly formulate the physical principles of
positions, directions, and sensor values of mobile devices,
and describe the conventional estimation and proposed
method. In addition, we present an approach for
collecting acceleration and position data. Finally, a basic
assessment of the system is provided.

Related Work
Recently, the introduction of inexpensive motion capture
systems such as Microsoft Kinect has opened up a new
line of active research [1, 2]. Kinect is used to estimate
the human pose from the depth image. We note that
there are methods that can estimate the position and
orientation of sensors using portable sensors and
cameras [4], and can detect faster movements with higher

accuracy than motion capture using a wearable wristband
device that combines aaccelerometers and gyroscopes [5].
In our research, we aim to estimate the human pose more
easily using only accelerometers instead of Kinect. In
addition, research is carried out to convert data between
Kinect and IMU (Inertial Measurement Units) [3]. IMU is
a device for measuring the movement of a person from a
sensor attached to the joint. We use Kinect in our
research too. However, our work differs from the previous
research in the manner in which prior distributions are
modeled.
In robotics area, there are many methods to estimate
positions and orientations using prior knowledge [6–8].
We use prior knowledge to estimate positions and
orientations too. However, the estimation target of our
research is different from them.

Formulation
In this chapter, we describe the formulation of the stated
quantity of the mobile device.

Coordinate system of the mobile device
We define a world coordinate system as Σ, and a
coordinate system fixed to mobile devices as ΣD. Fig. 1
shows these relationships.
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Figure 1: Phone coordinate system.

Further, the state vectors are defined as follows.

hk ≜
[
hx,k hy,k hz,k

]T ∈ Σ

sk ≜
[
sx,k sy,k sz,k

]T ∈ Σ

ak ≜
[
ax,k ay,k az,k

]T ∈ Σ

θk ≜
[
θx,k θy,k θz,k

]T ∈ Σ

ϕk ≜
[
ϕx,k ϕy,k ϕz,k

]T ∈ Σ

Here, x, y and z are coordinate axes, and k is discrete
time. Further, hk, sk and ak are the location of the
center of gravity, velocity and acceleration of mobile
devices, respectively. Moreover, θk and ϕk are the
rotation angular velocity and the rotation angle of ΣD to
Σ respectively. h0, s0, a0, ϕ0 and θ0 are assumed to be
known.

Relationship of State Quantity
Angular velocity and acceleration of mobile devices are to
be measured at sampling intervals ∇[s]. First, the angular
velocity of mobile devices in Σ is observed by the

gyroscope of mobile devices.

Dϕk = ϕk + vk (1)

Here, the left shoulder D of each variable represents that
the definition belongs to ΣD. vk ∼ N (0, σ2

v) is a
distribution that models observation noise. vk is the
average value of 0 and represents that it follows a
Gaussian distribution of the dispersion σ2

v . Next,
acceleration is observed as follows by an accelerometer
mounted on mobile devices as follows.

Dfk =Dak +Dgk +wk (2)

wk is the observation noise follow a certain distribution.
When R(θ) is defined as the Rotation matrix with Euler
angles θ and g is defined as the invariant gravitational
acceleration in k, the following equation is satisfied.

Dak = R(θk) · ak (3)
Dgk = R(θk) · g (4)

Further, the velocity and positions of the center of gravity
of mobile devices, and the change of angle can be
approximated using the Euler method by backward
difference as follows.

sk = sk−1 +∇ · ak (5)

hk = hk−1 +∇ · sk (6)

θk = θk−1 +∇ · ϕk (7)

A Method for Tracking Holding Position of
the Mobile Device
In this chapter, based on the formulation stated
previously, a method for tracking the holding position of
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mobile devices is proposed. In essence, we describe a
method for estimating hk when angular velocity Dϕk and
acceleration Dfk are observed given that hk−1, sk−1 and
θk−1 are known. In the following, we present an overview
of the proposed and conventional methods.

Tracking the holding position of the mobile device using
the conventional method:
1. Estimate acceleration ak from angle θk−1 and the

observations Dfk,
Dϕk by linear regression.

2. Estimate value of the displacement from acceleration
estimated ak and the displacements in the past
hk−1, hk−2 by double integration.

Tracking the Holding Position of the Mobile Device using
the Proposed Method:

1. Collect L neighbor samples (hl
k−1,h

l
k−2) of

displacements in the past displacements
(hk−1,hk−2) from the training data that relate to
displacement.

2. Calculate al
k for the samples (hl

k,h
l
k−1,h

l
k−2) in each

the sample l by calculating the difference between
two times the displacements.

3. Estimate the observed values Df l
k,

Dϕl
k and the angle

θl
k−1 by performing a linear regression for al

k in
each sample l.

4. Estimate hk by the k-neighborhood method for the
observation values (θk−1,

Dfk,
Dϕk) using the

training data for L (θl
k−1,

Df l
k,

Dϕl
k).

Mobile Device State Estimation using the Conventional
Method

Assuming that the angular velocity Dϕk and acceleration
Dfk have been observed in hk−1, sk−1, and θk−1 states
in which a is known. At this time, displacement hk,
velocity sk and angular velocity θk at time k can be
derived analyticallwy in the following manner.
By substituting the ϕk from (1) in (7), we get

θk = θk−1 +∇ · ϕk = θk−1 +∇ · (Dϕk − vk) (8)

By substituting ak from (3) and Dak from (2) in (7) in a
row, we get

sk = sk−1 +∇ · ak = sk−1 +∇ ·R−1(θk) ·Dak

= sk−1 +∇ ·R−1(θk)(
Dfk −Dgk −wk)

= sk−1 −∇ · gk +∇ ·R−1(θk)(
Dfk −wk) (9)

By substituting this formula in (6), It is possible to obtain
the hk neglecting noise by. However, the recurrence
formula is solved as follows.

θk = ∇ ·
k∑

i=1

(Dϕi − vi)

sk = ∇ ·
k∑

i=1

R−1(θi)(
Df i −wi)

hk = ∇ ·
k∑

i=1

si = ∇2 ·
k∑

i=1

i∑
j=1

R−1(θj)(
Df j −wj)

Considering only the influence of noises vi and wi the
effect of the order of

∑k
i=1 vi = O(k) is stored in the

angular velocity θk and the effect of the order of∑k
i=1

∑i
j=1 R

−1(θj) ·wj = O(k2) is stored in the
displacement hk. This makes it difficult to ensure
accuracy.
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Implementation of the Conventional Method
In the following, we describe the implementation of the
conventional method and compare it to the proposed
method as described in the next section.

Given that hk−1, sk−1 and θk−1 are known, the
acceleration is observed, and the following procedures are
performed.

1. Calculate acceleration ak from θk−1 and obtain the
observed values Dfk,

Dϕk as
ak ← αA(θk−1,

Dfk,
Dϕk) by linear regression

given that α is the regression coefficient vector and
A is a function defined by
A(θ,f ,ϕ) = R(θ +∇ϕ)f .

2. Ealculate the estimate of the displacement

hk ← 2hk−1 − hk−2 +∇2ak

from ak as determined, hk−1 and hk−2.

The derivation of these equations is as follows.

• a in step 1, by (2)-(4),

ak = R−1(θk)
Dak

= R(−θk)(
Dfk −Dgk −wk)

= R(−θk)(
Dfk −wk)− g

From (1) and (7)

ak = R(−θk−1 −∇(Dϕk − vk))(
Dfk −wk)− g

ak is modeled With the exception of the constant
term and noise.

• a in step 2, using (5)-(6),

hk = hk−1 +∇sk = hk−1 +∇(sk−1 +∇ak)

= hk−1 +∇((hk−1 − hk−2)/∇+∇ak)

= 2hk−1 − hk−2 +∇2ak

Then, explaining using conditional probability.

P (hk|hk−1,hk−2,θk−1,
Dfk,

Dϕk)

Using the addition theorem,

=

∫
ak

P (hk|hk−1,hk−2,θk−1,
Dfk,

Dϕk,ak)

·P (ak|hk−1,hk−2,θk−1,
Dfk,

Dϕk)dak

As seen from the derivation of the above equation, we
assume conditional independence between (hk−1,hk−2)
and (θk−1,

Dfk) under ak,

=

∫
ak

P (hk|hk−1,hk−2,ak)P (ak|θk−1,
Dfk,

Dϕk)dak

(10)

In (10), the average of the second factor calculated using
step 1 and the first factor is calculated using step 2.

State Estimation of the Positions of On-Body Mobile De-
vices Utilizing Prior Knowledge
In this section, we propose a method capable of providing
information to estimate the prior distributions of variables
and improve the accuracy of state estimation by the
neighborhood method. In advance, it should be
constructed prior distribution of displacement and velocity
using motion capture such as Kinect sensor.
Accumulation of the noise is suppressed by giving the
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estimated time it. It is assumed that hk−1, hk−2, θk−1,
Dfk and Dϕk are known. By Bayes theorem,

P (hk|hk−1,hk−2,θk−1,
Dfk,

Dϕk)

∝ P (θk−1,
Dfk,

Dϕk|hk,hk−1,hk−2)P (hk|hk−1,hk−2)

Then, from the addition theorem,

=

∫
ak

P (θk−1,
Dfk,

Dϕk|hk,hk−1,hk−2,ak)

·P (ak|hk,hk−1,hk−2)dak

·P (hk|hk−1,hk−2)

As with the previous section, assuming conditional
independence between (hk−1,hk−2) and (θk−1,

Dfk)
under the ak.

=

∫
ak

P (θk−1,
Dfk,

Dϕk|ak)P (ak|hk,hk−1,hk−2)dak

·P (hk|hk−1,hk−2)

In this formula,

• P (θk−1,
Dfk,

Dϕk|ak) which is the first factor is
obtained from (θk−1,

Dfk,
Dϕk) = βak + β0 by a

linear regression. However, β,β0 is the regression
coefficient vector.

• P (ak|hk,hk−1,hk−2) which is the second factor is
uniquely obtained by (5)-(6) as follows.

ak = (sk − sk−1)/∇
= ((hk − hk−1)/∇− (hk−1 − hk−2)/∇)/∇
= (hk − 2hk−1 + hk−2)/∇2

• At P (hk|hk−1,hk−2) which is the third factor,
sampling is executed by the neighborhood method.
If A of one of (hl,hl−1,hl−2) is sampled by
preparing the training data set in advance, this
distribution follows approximately follows
P (hk,hk−1,hk−2). By utilizing this concept, the
samples according to P (hk|hk−1,hk−2) are
obtained by sampling the neighborhood of
(hk−1,hk−2) from H.

Implementation of the Proposed Method using the Neigh-
borhood Method
In the following, we describe the implementation of the
proposed method. When acceleration Dfk and angular
velocity Dϕk have been observed and hk−1, hk−2, sk−1

and θk−1 are known, this method performs the following
procedure.

1. Obtain L samples (hl
k−1,h

l
k−2) in the neighborhood

of the (hk−1,hk−2) and hl
k corresponding its from

learning data H.This distribution of hl
k follows

approximately the third factor P (hk|hk−1,hk−2).

2. In accordance with the second factor, alculate
al
k ← (hl

k − 2hl
k−1 + hl

k−2)/∇2 for each l.

3. In accordance with the first factor, calculate
(θl

k−1,
Df l

k,
Dϕl

k)← βal
k + β0 for each l by linear

regression.

4. Obtain M samples in the neighborhood of the
observed values (θk−1,

Dfk,
Dϕk) from L

(θl
k−1,

Df l
k,

Dϕl
k), and to determine the average

1

M

∑
m

hm
k

of hm
k corresponding to it to estimated value of hk.
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Evaluation
In this chapter, we describe the data collection system and
the preliminary experiments in three-dimensional space.

Data collection system
We have developed a software for collecting data in the
Processing environment. Fig. 2 shows a screen image of
the software.

Figure 2: A screen image of the data collection system

The value of the accelerometer is also received by the
UDP communication at the same time as the position
information from Kinect. This received data is stored to a
file is sampled at the same time as the position
information. Simultaneously, the audio and video also
stored. Although our system operates at an acceleration
frequency of 100 Hz, it synchronizes with Kinect, which

operates at 30 Hz. We use iPodTouch as an
accelerometer. Our system on the iPodTouch incorporates
the HASC Logger1, which is a toolkit for activity
recognition research.

Experiment
We performed a preliminary experiment to estimate the
displacement from the horizontal movement of the
accelerometer with one human subject. The experiment
was carried out with a right hand to the acceleration
sensor. The sensor is held with the screen facing outward,
that is, the left hand side of the sensor is set to be the
X-axis positive velocity. After the start of the recording,
the hand is moved at a slow pace in the transverse
direction for approximately one min.

Setup
We estimate prior distributions from acceleration and
displacement data generated by the mobile sensor and the
Kinect, respectively. However, both mobile sensor and
Kinect data are prone deviations caused by sampling time
and the scale. However, we do not know the X-axis
direction of the acceleration sensor to verify to see if it is
directly perpendicular to the force of gravity. Therefore,
we carried out a pretreatment the following as. We do not
know the X-axis direction of the accelerometer or to see if
it is perpendicular to the force of gravity exactly.
Therefore, Considered easily with gravity component
moving average of every second, it was smoothed
(Hereinafter, this is a low-pass filter) by a weighted
moving average of 9:1 of the two samples, after
conducting the removal of the gravity component.
Orientation information obtained from the Kinect, sk is
obtained from the position information of the hand usind
(6), and ak is obtained by (5). We used the low-pass

1HASCTool, http://hasc.jp/
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Figure 3: Estimated result of the speed according to the conventional method

filter before and after these stages. Further, we shifted
the time of the accelerometers so that the
cross-correlation is maximized. Moreover, in order to
satisfy the assumption that hk−1, hk−2 are known, the
initial value of the estimated value are aligned to h1, h2.

Building a Prior Distribution
The prior distribution of a variable is obtained from the
displacement, the speed and the acceleration of Kinect.
Further, the acceleration of the mobile sensor was
computed as described previously. To calculate the

distribution, the first half of the data were used as
learning data. However, in the proposed method, L is set
to 500, and M is set to 125(please see previous chapter).

Experimental Result
Fig.3 shows the estimation result using the conventional
method. Fig.4 shows the estimation result obtained by the
proposed method.In the conventional method, the result
depicts a large displacement error. Therefore, we show a
figure of the estimated result of the speed. In both
figures,the X-axis represents size of the data set. The
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Figure 4: Estimated result of displacement by the proposed method

Y-axis in Fig.3 represents the value of the speed, whereas
in Fig.4, it represents the value of displacement. In the
conventional method, the predicted value (Estimate) has
a large value that is significantly relative to the true value
(Truth) in stage the speed. Therefore, when the
displacement is considered, the misalignment width is
expected to further increase. Moreover, the Fluctuation
not be followed, so It cannot be said to follow well.
In the proposed method, any axes in the first half followed
a certain pattern to some extent. However, signification
deviations are observed near k = 200 at Y-axis. This

discrepancy is results from the failure to utilize prior
knowledge to discover major changes. The second half,
although it is not able to follow to some extent to the
middle, the value is the slight deviation near the end. This
is because it is used for learning the first half. Moreover,
the direction of the estimated value has a smaller
amplitude on the whole. This is because this method
calculates the average of the estimated values at the end,
and therefore, it tends to yield a small estimate of the
direction-amplitude. In this manner, we confirmed that

765

WORKSHOP: HASCA



the proposed method can follow in a stable in comparison
with conventional methods

Conclusion
In this paper, we propose a method utilizing prior
knowledge of positions and directions of sensors, and
performed an initial assessment. The result shows that
the proposed method stably follows a given trajectory
compared to conventional methods.
The future plan is to consider high-dimensional data, and
determine the accuracy of our approach. Moreover, we
expect to improve the accuracy and the computational
speed through the introduction of importance sampling
such as a particle filter.
We use Kinect as a motion capture this time, so a
phenomenon that fail to capture often happened in case of
hand in front of the body. Another consideration that may
be of interest is to increase the accuracy of the motion
capture procedure, which we believe would be useful for
modeling probability distributions. In In futureaddition, we
hope to optimize the L and M parameters.
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